Minggu, 01 Januari 2017

PENALARAN

1. KETIDAKPASTIAN

Ketidakpastian dapat dianggap sebagai suatu kekurangan informasi yang memadai untuk membuat suatu keputusan. Ketidakpastian merupakan suatu permasalahan karena mungkin menghalangi kita dalam membuat suatu keputusan yang terbaik bahkan mungkin dapat menghasilkan suatu keputusan yang buruk. Dalam dunia medis, ketidakpastian mungkin menghalangi pemeriksaan yang terbaik untuk para pasien dan berperan untuk suatu terapi yang keliru. Dalam bisnis, ketidakpastian dapat berarti kerugian keuangan.

Sejumlah teori yang berhubungan dengan ketidakpastian telah ditemukan, diantaranya probabilitas klasik, probabilitas Bayes, teori Hartley yang berdasarkan pada himpunan klasik, teori Shanon yang didasarkan pada peluang, teori Dempester-Shafer dan teori fuzzy Zadeh. Contoh-contoh klasik system pakar yang sukses yang bergubungan dengan ketidakpastian adalah MYCIN yang berguna untuk diagnose medis dan PROSPECTOR untuk eksplorasi mineral.

Suatu penalaran dimana adanya penambahan fakta baru mengakibatkan ketidakkonsistenan, disebut dengan “Penalaran Non Monotonis”. Ciri-ciri penalaran tsb sebagai berikut :
  • mengandung ketidakpastian
  • adanya perubahan pada pengetahuan
  • adanya penambahan fakta baru dapat mengubah konklusi yang sudah terbentuk, misalkan S adalah konklusi dari D, bisa jadi S tidak dibutuhkan sebagai konklusi D + fakta baru
  • untuk mengatasi ketidakpastian maka digunakan penalaran statistik.
Contoh aplikasi yang klasik sistem pakar yang sukses sehubungan dengan ketidakpastian:
  • MYCIN untuk diagnosa medis
  • PROPECTOR untuk ekplorasi mineral
Banyak kemungkinan dan ketidakpastian menyertai dalam masalah dan solusinya. Ada beberapa sumber dari ketidakpastian, beberapa diantaranya adalah :
  1. Masalah
    Beberapa masalah meliputi factor-faktor yang oleh sifat mereka, tidak pasti atau acak. Sebagai contoh, dalam pengobatan, penyakit yang sama dapat member gejala yang berbeda untuk pasien yang lain.
  2. Data
    Beberapa masalah mungkin memiliki batasan yang kurang jelas bagi seseorang. Orang yang menghadirkan masalah mungkin mengetahui beberapa fakta untuk kepastian, menuduh lainnya dan tidak mengetahui lainnya. Angka-angka dan nilai-nilai dapat tidak tepat, ditebak atau tidak diketahui.
  3. Pakar
    Manusia sering dapat memakai pengetahuan mereka tanpa mengetahui secara eksplisit apa pengetahuan itu sendiri. Mereka mungkin harus meningkatkan secara detail apa yang mereka lakukan dan bagaimana dan tampak tak jelas atau bahkan bertentangan dengan dirinya sendiri.
  4. Solusi
    Ada beberapa area tertentu dimana tidak terdapat pakar yang diakui. Pakar sendiri mungkin tidak setuju satu sama lain dan tak seorangpun dapat memutuskan solusi yang baik. Domain seperti itu dapat berupa strategi militer.
2. TEOREMA DAN PROBABILITAS BAYES

Dalam teori probabilitas dan statistika, Pengertian Teorema Bayes adalah teorema yang digunakan untuk menghitung peluang dalam suatu hipotesis, Teorema bayes dikenalkan oleh ilmuan yang bernama Bayes yang ingin memastikan keberadaan Tuhan dengan mencari fakta di dunia yang menunjukan keberadaan Tuhan. Bayes mencari fakta keberadaan tuhan didunia kemudian mengubahnya dengan nilai Probabilitas yang akan dibandingkan dengan nilai Probabilitas. teorema ini juga merupakan dasar dari statistika Bayes yang memiliki penerapan dalam ilmu ekonomi mikro, sains, teori permain, hukum dan kedokteran.

Teorema Bayes akhirnya dikembangkan dengan berbagai ilmu termasuk untuk penyelesaian masalah sistem pakar dengan menetukan nilai probabilitas dari hipotesa pakar dan nilai evidence yang didapatkan fakta yang didapat dari objek yang diagnosa. Teorama Bayes ini membutuhkan biaya komputasi yang mahal karena kebutuhan untuk menghitung nilai probabilitas untuk tiap nilai dari perkalian kartesius. penerapan Teorema Bayes untuk mencari penerapan dinamakan inferens Bayes.

Contoh Soal :
Misalkan kawan Anda bercerita dia bercakap-cakap akrab dengan seseorang lain di atas kereta api. Tanpa informasi tambahan, peluang dia bercakap-cakap dengan perempuan adalah 50%. Sekarang misalkan kawan Anda menyebut bahwa orang lain di atas kereta api itu berambut panjang. Dari keterangan baru ini tampaknya lebih bolehjadi kawan Anda bercakap-cakap dengan perempuan, karena orang berambut panjang biasanya wanita. Teorema Bayes dapat digunakan untuk menghitung besarnya peluang bahwa kawan Anda berbicara dengan seorang wanita, bila diketahui berapa peluang seorang wanita berambut panjang.

Misalkan:W adalah kejadian percakapan dilakukan dengan seorang wanita.L adalah kejadian percakapan dilakukan dengan seorang berambut panjangM adalah kejadian percakapan dilakukan dengan seorang pria

Kita dapat berasumsi bahwa wanita adalah setengah dari populasi. Artinya peluang kawan Anda berbicara dengan wanita,


Misalkan juga bahwa diketahui 75 persen wanita berambut panjang. Ini berarti bila kita mengetahui bahwa seseorang adalah wanita, peluangnya berambut panjang adalah 0,75. Kita melambangkannya sebagai:


Sebagai keterangan tambahan kita juga mengetahui bahwa peluang seorang pria berambut panjang adalah 0,3. Dengan kata lain:


Di sini kita mengasumsikan bahwa seseorang itu adalah pria atau wanita, atau P(M) = 1 - P(W) = 0,5. Dengan kata lain M adalah kejadian komplemen dari W.

Tujuan kita adalah menghitung peluang seseorang itu adalah wanita bila diketahui dia berambut panjang, atau dalam notasi yang kita gunakan, P(W|L). Menggunakan teorema Bayes, kita mendapatkan:


Di sini kita menggunakan aturan peluang total. Dengan memasukkan nilai-nilai peluang yang diketahui ke dalam rumus di atas, kita mendapatkan peluang seseorang itu wanita bila diketahui dia berambut panjang adalah 0,714. Angka ini sesuai dengan intuisi awal kita, bahwa peluang kawan kita itu bercakap-cakap dengan wanita meningkat.

3. FAKTOR KEPASTIAN (CERTAINTYY FACTOR)

Dalam menghadapi suatu masalah sering ditemukan jawaban yang tidak memiliki kepastian penuh. Ketidakpastian ini bisa berupa probabilitas atau kebolehjadian yang tergantung dari hasil suatu kejadian. Hasil yang tidak pasti disebabkan oleh dua faktor yaitu aturan yang tidak pasti dan jawaban pengguna yang tidak pasti atas suatu pertanyaan yang diajukan oleh sistem. Hal ini sangat mudah dilihat pada system diagnosis penyakit, dimana pakar tidak dapat mendefinisikan tentang hubungan antara gejala dengan penyebabnya secara pasti, dan pasien tidak dapat merasakan suatu gejala dengan pasti pula. Pada akhirnya ditemukan banyak kemungkinan diagnosis.

Sistem pakar harus mampu bekerja dalam ketidakpastian. Sejumlah teori telah ditemukan untuk menyelesaikan ketidakpastian,termasuk diantaranya probabilitas klasik (classical probability), probabilitas Bayes (Bayesian probability), teori Hartley berdasarkan himpunan klasik (Hartley theory based on classical sets), teori Shannon berdasarkan pada probabilitas (Shannon theory based on probability), teori Dempster-Shafer (Dempster-Shafer theory), teori fuzzy Zadeh (Zadeh.s fuzzy theory) dan faktor kepastian (certainty factor). Dalam penelitian ini yang digunakan adalah factor kepastian.

Faktor kepastian merupakan cara dari penggabungan kepercayaan (belief) dan ketidapercayaan (unbelief) dalam bilangan yang tunggal. Dalam certainty theory, data-data kualitatif direpresentasikan sebagai derajat keyakinan (degree of belief).

Tahapan Representasi Data Kualitatif
Tahapan dalam merepresentasikan data-data kualitatif :
  • kemampuan untuk mengekspresikan derajat keyakinan sesuai dengan metode yang sudah dibahas sebelumnya.
  • kemampuan untuk menempatkan dan mengkombinasikan derajat keyakinan tersebut dalam sistem pakar.
Dalam mengekspresikan derajat keyakinan digunakan suatu nilai yang disebut certainy factor (CF) untuk mengasumsikan derajat keyakinan seorang pakar terhadap suatu data.

Formulasi Certainy Factor


Dimana :
CF = Certainy Factor (faktor kepastian) dalam hipotesis H yang dipengaruhi oleh fakta E.
MB=Measure of Belief (tingkat keyakinan), adalah ukuran kenaikan dari kepercayaan hipotesis H dipengaruhi oleh fakta E.
MD=Measure of Disbelief (tingkat ketidakyakinan), adalah kenaikan dari ketidakpercayaan hipotesis H dipengaruhi fakta E.
E = Evidence (peristiwa atau fakta).
H = Hipotesis (Dugaan).

4. TEORI DEMPSTER-SHAFER

Dempster shafer adalah suatu teori matematika untuk pembuktian berdasarkan belief functions and plausible reasoning (Fungsi kepercayaan dan pemikiran yang masuk akal), yang digunakan untuk mengkombinasikan potongan informasi yang terpisah (bukti) untuk mengkalkulasi kemungkinan dari suatu peristiwa. Teori ini dikembangkan oleh Arthur P.Dempster dan Glenn shafer.

Secara umum teori Dempster-Shafer ditulis dalam suatu interval :

[Belief, Plausibility]

Belief (Bel) adalah ukuran kekuatan evidence dalam mendukung suatu himpunan proposisi. Jika bernilai 0 mengindikasikan bahwa tidak ada evidence, dan Plausibility (Pl) jika bernilai 1 menunjukkan adanya kepastian.
Plausibility dinotasikan sebagai :
Pl(s) = 1 – Bel(Øs)
Jika yakin akan Øs maka dikatakan bahwa Bel(s) = 1 dan pl(Øs) = 0.
Misal q = {A,F,D,B}
dengan :
A = Alergi
F = Flue
D = Demam
B = Bronkitis 

TABEL GEJALA


Keterangan:
A= Alergi
F= Flue
D= Demam
B= Bronkitis 

CONTOH KASUS

Perhatikan CONTOH berikut ini :
Vany mengalami gejala panas badan. Dari diagnosa dokter kemungkinan Vany menderita Flue, Demam atau Bronkitis. Tunjukkan kaitan ukuran kepercayaan dari elemen-elemen yang ada !


Munculnya gejala baru maka harus dihitung densitas baru untuk beberapa kombinasi (m3).
Tabel Aturan Kombinasi untuk m3:


Sumber Referensi :






Tidak ada komentar:

Posting Komentar